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1 Introduction

Given the size of the factor zoo, it is natural that there is reduced appetite for research identi-
fying additional risk factors, especially when it is not clear that they add value beyond combi-
nations of other known risk factors. However, new species of risk factors, largely unrelated to
better-known financial and economic risks, are more welcome. As awareness of environmental
issues has risen, it is natural to expect that markets increasingly price such risks (Choi et al.,
2020; Krueger et al., 2020; Bolton and Kacperczyk, 2021; Hsu et al., 2022). Similarly, as the
economic environment in which businesses operate evolves, it is likely that new risk factors
will emerge. Cybercrime is one such evolution. The U.S. Council of Economics Advisers has
reported that malicious cyber activity cost the U.S. economy between $57 billion and $109
billion in 2016 (CEA, 2018). The Center for Strategic and International Studies (2018), claim
that almost 1% of global GDP, close to $600 billion, is lost to cybercrime each year.

We test the impact of cybercrime on the cross-section of expected stock returns, seeking
to determine whether exposure to cybercrime is priced and to provide an estimate of the mar-
ket price of cybercrime. We form a cybercrime news attention measure by using a novel news
dataset at the daily frequency, distributed as the Thomson-Reuters (now Refinitiv) MarketPsych
Index (TRMI) of cybercrime for the United States. This is a natural language processing en-
gine’s score derived from articles published in media outlets including both news and social
media.

Our investigation is guided by Merton (1973) intertemporal capital asset pricing model
(ICAPM). This implies that expected excess returns should vary in the cross-section according
to conditional exposures to innovations in state variables that predict future investment oppor-
tunities. Bybee et al. (2022) show both theoretically and empirically how news narratives are
associated with the idea of systematic risk, in particular, the “state variables” in the ICAPM.
They argue that the news narrative captures investors’ concerns about future investment op-
portunities and hence drives the marginal value of consumption and stochastic discount factor.
Inspired by Bybee et al. (2022), we shape economic insight with an example of a cybercrime
news narrative. Alongside reading an increase in the “cybercrime” narrative in the news media,
investors will expect a worsening of investment opportunities, perhaps in the wake of exacer-
bated economic conditions or increased uncertainty. Essentially indicated in ICAPM, investors’
marginal utility and the stochastic discount factor increase as the lessening of concurrent con-
sumption in a state deteriorates “future investment opportunities”. Consequently, risky assets
that ex-ante more positively covary with the “cybercrime” narrative in the news should have a
lower risk premium for its virtue in hedging consumption risk, ceteris paribus, and vice versa.
In our context, if cybercrime, proxied by the news attention, adversely (favorably) affects such
opportunities (or equivalently, the distribution of future returns from the aggregate wealth port-
folio), then we should observe a negative (positive) relation between the average excess return
of the asset and that asset’s sensitivity to innovations in cybercrime news attention.

2



We validate that increasing cybercrime news attention negatively forecasts future eco-
nomic activities and aggregate stock market returns and, in particular, positively forecasts mar-
ket volatility. As a consequence, the price of risk on the cybercrime news measure is nega-
tive, which directs our exploration of its implications in asset pricing. We estimate monthly
cybercrime betas (βCCA) using 12-month rolling regressions of daily excess returns on the in-
novations in the TRMI cybercrime index for stocks traded on the New York Stock Exchange
(NYSE), American Stock Exchange, and Nasdaq. We then examine the performance of the
βCCA in predicting the cross-sectional dispersion in future stock returns. Stocks in the high-
est cybercrime beta portfolio generate monthly returns about 0.60% per month lower than the
returns from stocks in the lowest cybercrime beta portfolio. Controlling for well-known fac-
tors, we find the difference between the returns on the portfolios with the highest and lowest
cybercrime beta remains negative and highly significant.

The higher demand for assets that hedge cybercrime risks (high βCCA) increases their price
and lowers their average return. We find strong empirical support for this. The Fama-French
three-factor alpha on this portfolio is -0.41% per month and is highly statistically significant.
Similarly, we might expect that assets exposed to cybercrime should offer higher returns as
compensation. Indeed, the portfolio with stocks that are subject to cybercrime risks (low βCCA)
offers Fama-French three-factor alphas of +0.23% per month.

Recognising the issues arising from using sensitivities to a non-traded economic series in
asset pricing tests, we follow the approach of Lamont (2001) and construct a cybercrime track-
ing portfolio. Repeating the above exercise and forming portfolios based on sensitivities to
the tracking series generates similar results. Stocks with positive sensitivity to the cybercrime
tracking portfolio generate significantly lower next-month returns than those from negative
sensitivity stocks. The high-minus-low (HL) portfolio generates an average excess return of
-0.95% per month, is highly statistically significant, and survives after we control for other fac-
tors. The dominant share of the negative HL portfolio return comes from the high cybercrime
beta portfolio. This portfolio offers a highly statistically significant alpha of -0.5% per month,
compared to the low beta portfolio’s statistically significant alpha of 0.4% per month. That is,
stocks that offer positive returns when there are positive shocks to cybercrime command a high
price and hence offer low expected returns. Stocks that vary negatively with cybercrime shocks,
conversely, earn a marginally significant positive risk premium. We push this one step further
by splitting the sample into stocks that demand significant amounts of cybersecurity and stocks
that do not, based on the industry classifications of the report by World Economic Forum (2016)
and Cybersecurity Guide.1 There is only weakly significant evidence of relationship between
cybercrime sensitivities and subsequent returns/alphas for the cybersecruity demanding stocks.
Our findings are primarily driven by the stocks that do not demand high levels of cybersecurity

1In 2016, WEF issued a report to propose a view of systematic risk caused by cyber-related issues. See the
specific information about industry classification based on the importance of cybersecurity in the WEF 2016 report
for cybersecurityguide.org.
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and their consequent abilities to hedge cybercrime exposure.
To ensure that the return differences are driven by cybercrime exposures rather than well-

known stock characteristics or risk factors, we perform bivariate portfolio sorts and re-examine
the raw return and alpha differences. We control for size and book-to-market (Fama and French,
1992;1993), profitability and investment (Fama and French, 2015; Hou et al., 2015), betas with
the market factor, with market volatility (Ang et al., 2006; Campbell et al., 2018) and with
economic policy uncertainty (Brogaard and Detzel, 2015), momentum (Jegadeesh and Titman,
1993), short-term reversal (Jegadeesh, 1990), illiquidity (Amihud, 2002), idiosyncratic volatil-
ity (Ang et al., 2006), and the dispersion of analyst earnings forecasts (Diether et al., 2002).
The negative relation between the cybercrime beta and future returns remains economically
significant after controlling for each of these stock return predictors. We also examine stock-
level cross-sectional relations using Fama and MacBeth (1973) regressions. Controlling for all
return predictors simultaneously, the cross-sectional regressions provide evidence for an eco-
nomically and statistically significant negative relation between the cybercrime beta and future
stock returns.

Our third major result is that a pricing factor based on the tracking portfolio is capable
of pricing a set of 349 portfolios; 300 formed of 10 by 10 bivariate portfolio sorts on (i) size
and book-to-market, (ii) size and investment and (iii) size and profitability, plus 49 industry
portfolios. In Fama-MacBeth regressions, the cybercrime factor betas prove highly statistically
significant and suggest that a two standard deviation increase in sensitivity to the tracking factor
results in a 0.65% per month decrease in portfolio return. In their entirety, our results suggest
that the cybercrime factor commands an economically significant risk premium and helps to
price assets beyond current models.

Related Literature As befits an emerging and increasingly important risk in the economy,
cybercrime is an active research topic in the finance literature. Studies by Jiang et al. (2020),
Jamilov et al. (2021), and Florackis et al. (2022) are closely related to ours.

Florackis et al. (2022) apply textual analysis tools to 10-K risk factor disclosures by firms
to generate a firm-level measure of cybersecurity risk for all US-listed firms. The “Item 1A.
Risk Factors” section of 10-Ks require firms to describe the most significant risks they feel
managers are are exposed to. Jiang et al. (2020) apply several machine learning techniques to a
broader set of information - though including 10-K filings - to estimate the ex-ante probability
that a firm will face a cyberattack. Both papers then show that their cyber-security measure
is related to stock returns. Related to this strand of research, Jamilov et al. (2021) build text-
based measures of cybersecurity risk from quarterly earnings calls, finding that exposure to
cybersecurity risk affects stock returns both directly and via contagion effects.

All three papers build firm-specific measures of exposure to cybersecurity risk. As such,
they naturally conflate idiosyncratic and systematic cybersecurity risks. Our analysis differs
since we estimate firms’ sensitivities to a common measure of cybercrime reported in news
articles. While we acknowledge that there are a variety of measures of cybercrime risk from
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which to choose, having made this selection we follow standard and transparent techniques to
derive firm-specific sensitivities to cybercrime risk. The simplicity of our approach has several
advantages, not least the ability to be applied in jurisdictions with less rigorous regulatory filing
requirements and/or less informative disclosures through analyst calls than in the United States.
We provide reassurance that the choice of cybercrime measure is not critical by generating very
similar findings using a particularly simple measure based on publicly-available Google search
data.

Our approach has some other advantages. The paper by Florackis et al. (2022) uses data
beginning in 2007, at which time fewer than 30% of U.S. firms make cybersecurity-risk dis-
closures in their 10-K filings. This proportion jumps from 39% in 2010 to over 60% in 2012
following specific guidance from the SEC in 2011. Whether firms’ managers chose to disclose
the true cyber-risks they faced appears to have been at least partially driven by regulatory re-
quirements for a large part of their sample. Of course, there is also the question of whether
firms’ managers can accurately assess the cyber-risks that they face given the novelty of this
particular risk and the fast rate of change of both vulnerabilities to cybercrime and the scale of
the activities of cyber-criminals. We rely on the market’s assessments of cybercrime risks as
evidenced by stock returns.

Perhaps most importantly, our paper differs in terms of the emphasis we place on firms that
are not seen as being at risk from cybercrime. Much of the important asset pricing implications
we draw are driven by the underperformance of firms that offer a hedge to cybercrime, rather
than any positive risk premium demanded by investors to hold positions in stock vulnerable
to cyber attack. The key measure in Jiang et al. (2020) is an ex ante estimated cyber attack
probability for the following year, naturally bounded at zero. Florackis et al. (2022) compute
a cybersecurity risk index for each firm and this takes the value zero up to at least the 25th
percentile of their sample. In these two applications, firms cannot act as hedges for cybercrime
risks, they can only be said to be at less risk than other firms. In our paper, the distribution of
estimated exposures to cybercrime risk (after controlling for market risks) is distributed reason-
ably symmetrically around zero. While we find a significant positive Fama-French five factor
alpha for the portfolio of firms with the most negative sensitivities to innovations in cybercrime
news (approximatelty the most at risk 20% of firms as we sort into five portfolios), we find
large and very statistically significant negative alphas for the portfolios of firms with the most
positive sensitivities to cybercrime innovations. Similarly, when we split our sample into high
and low cybersecurity demanding sub-samples, the most significant findings are concentrated
in the low cybersecurity demanding firms that act as effective hedges against cybercrime risk,
not the companies that are exposed to the risk. We note that this is also true - though less
emphasised - in the existing literature. Jiang et al. (2020) note that most of their alpha “comes
from the bottom decile portfolio, where stocks with lowest cyber risk reside.”2

2Florackis et al. (2022) consistently find significant underperformance of their low cyber-risk portfolio with a
cybersecurity risk index of zero. Their high cyber-risk portfolio (index = 0.46) only commands a positive alpha in
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Jamilov et al. (2021) estimate cyber-risk betas in a manner similar to ours but based on
a non-traded cyber-risk measure derived from earnings calls. They too find average portfolio
returns are decreasing in cyber-risk betas, though their slope is shallow and the long-short
portfolio pays an average return of -3.3% per year (considerably less than the -11% per year
that we find).3 Further, their Table 5 puzzlingly suggests that portfolios of positive cyber-risk
beta stocks offer significantly positive alpha.

The paper is organized as follows. Section 2 describes the key data used in the paper
and demonstrates that our measure of cybercrime derived from news reports has characteristics
that suggest it may be a candidate state variable in the ICAPM setting. Section 3 presents the
cross-sectional asset pricing results that demonstrate significant risk premia consistent with the
results in Section 2. Section 4 concludes the paper.

2 Data and Initial Analysis

2.1 TRMI cybercrime News Index

We obtain the cybercrime news index data from Thomson Reuter MarketPsych (TRMI). TRMI
derives news feeds of newly published content from approximately 40,000 internet news sites.
More specifically, the news or social media content of information is assembled via TRMI
crawls through hundreds of financial news sites, including, for example, The New York Times,

The Wall Street Journal, The Financial Times, Seeking Alpha and many other sources that
financial professionals widely read. In contrast to the traditional method of lexical analysis
used in textual study, the technology used to create TRMI overcomes several shortcomings
of the conventional approach broadly used in extant finance and economics studies (detailed
information can be found in Peterson (2016)).

The TRMI cybercrime news data used in our empirical study calculates the intensity of
cybercrime-related news reported to the public. The index is unipolar and ranges from 0 to 1.4

The higher the number, the more references to cybercrime stories in news articles. Specifically,
the TRMI cyberCrime score is calculated by counting all cybercrime-related news references
scaled by the total news references, named Buzz within TRMI. Hence, the TRMI cyberCrime
is a fraction of total news references and scrutinizes only news stories related to cybercrime
events. Based on the TRMI data user guide we create the measure of cybercrime news coverage

a value-weighted setting.
3Jamilov et al.’s (2021) estimated betas also appear much smaller in magnitude than the ones we estimate.

Average absolute betas in their two extreme portfolios are around 0.035 compared to 0.25 in ours.
4There are rare cases of negative values due to Buzz being low, and the references to those indexes are

“Negated”. For example, references about “anti-cybercrime measures” or “fighting cybercrime” will cause a
negative value. The words “anti” and “fighting” allow companies whose business prevents or stops cybercrime
not to have positive scores. However, only 30 out of 8306 days have negative values, less than 0.4% sample size.
Therefore, our results are not affected by excluding days with negative values.
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(CCB) by multiplying the cybercrime score and Buzz.

CCBt = cybercrimet ∗Buzzt (1)

We calculate the CCBt at a daily frequency.5 Figure 1 displays the two daily series about
cybercrime and CCB from 1998 to 2021. As shown in Figure 1, the cybercrime news score
varies at daily frequency and steadily increases from 1998 to 2021, consistent with the advance-
ment of the internet and data implementations in the economy. The CCBt displays the same
pattern as the cybercrime measure, and significantly increases after 2005 from the increased
amount of news sources.6

2.2 State variable validation of cybercrime

Cybercrime has become a major global concern due to the steady increase in cyber attacks
since the internet was born in 1990.7 Therefore, we propose cybercrime as a new species of risk
within a state variable argument in the ICAPM of Merton (1973). In the Appendix, we present a
continuous economy with a representative agent whose marginal value of wealth is affected by
cybercrime and describe the conditions under which cybercrime can price asset returns cross-
sectionally consistent with ICAPM. To be a legitimate pricing factor, it must forecast asset
returns (“changes in the investment opportunity set”) or macroeconomic variables (Cochrane,
2009). We empirically verify the candidacy of cybercrime measured by the TRMI news cov-
erage (CCB) as a state variable before using it to discipline our empirical cross-sectional asset
pricing.

We follow Maio and Santa-Clara (2012), Boons (2016), and Cooper and Maio (2019), to
test whether cybercrime contains characteristics of a state variable in line with the core concept
of ICAPM (Merton, 1973). Specifically, we investigate the correlations between the change in
cybercrime news coverage and economic activity and components of the investment opportu-
nity set. We conjecture that increasing cybercrime coverage in the news media ought to predict
a worsening of future aggregate economic activity and investment opportunity set (and hence,
in our subsequent asset pricing tests, stocks with more positive exposure to cybercrime news
innovations should offer a negative risk premium). We use growth in industrial production
(IPD) and Chicago FED National Activity Index (CFNAI) as the measure of future aggregate
economic activity.8 We use future market return (RMKT ) and realized variance (SVAR) as prox-

5The daily measures from TRMI are calculated from newsfeeds before 3:30 PM ET each day.
6Please refer to detailed information about the TRMI news sources in the book by Peterson (2016). Addi-

tionally, this is a common feature of using news or social media data in textual analysis. Please see the survey
studies about textual analysis in finance by Tetlock (2015), Loughran and McDonald (2016), and Loughran and
McDonald (2020) .

7Studies and governmental reports that propose cybercrime is a “new-born” systematic risk Sommer and
Brown (2011), WFE(2013), WEF (2016), TCEA (2018), BOE (2018), ESRB (2020) (Sommer and Brown, 2011;
Tendulkar, 2013; ESRB, 2020; Brando et al., 2022)

8We obtain the data on both indexes from St. Louis FED database (FRED).
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ies for components of the investment opportunity set.9 First, we calculate the cumulative sum
from monthly values:

yt+1,t+q =
q

∑
i=1

yt+i, where yt+1,t+q ∈ {IPD,CFNAI,RMKT ,SVAR} and q ∈ {1,3,12,24,36,48}

We test yt+1,t+q for each proxy of investment opportunity set or economic activity in the next
1, 3, 12, 24, 36, and 48 months. Second, we calculate the daily ∆CCBt as the log difference
and sum the daily ∆CCB j in the past 5 years for each month t.

∆CCB j = lnCCB j − lnCCB j−1

∆CCBt = ∑
j
j−365∗5 ∆CCB j

First, we investigate the univariate correlation between ∆CCBt and yt+1,t+q. Mainly, we
are interested in whether ∆CCBt has the correct signs as suggested by the ICAPM, viewing
cybercrime as a potential state variable indicating a “bad time”. Panel A in Table 1 presents
the Pearson correlations between the ∆CCB and the measures of future economic activity and
market return and volatility. On the one hand, the correlations are significantly negative at most
long-horizons for IPG, CFNAI, and RMKT . The only exceptions are IPG and RMKT at 1 and 3
horizons. Additionally, Panels A, B, and C in Figure 2 display the series for the past five-year
cumulative ∆CCB is negatively related to the next 3, 12, and 24 months cumulative IPG and
CFNAI. Essentially, there are counter-cyclical between the series of ∆CCB and the other series
of measures to show peaks and troughs.10 Notably, as the horizon increases, there will be more
negatively correlated between ∆CCB measures for economic activity and market return. On
the other hand, increasing news coverage strongly and positively correlates with future market
volatility at all horizons. The magnitude of the average correlation coefficients between ∆CCB

and SVAR is relatively more prominent than the other measures. Panel D in Figure 2 shows
the strong comovement between the past five-year cumulative ∆CCB and the future market
volatility at 3, 12, and 24 months horizon.

Second, we conduct multiple predictive regressions to validate the predictive power of
∆CCB on future economic activity and investment opportunities as follows:

yt+1,t+q = aq +bq∆CCBt + cqX +ut,t+q where yt+1,t+q ∈ {IPD,CFNAI,RMKT ,SVAR} (2)

X is a vector of control variables that are well-known state variables in the literature (Maio
and Santa-Clara, 2012; Boons, 2016). For example, the term spread is denoted by T S and
measured by the difference between the ten-year bond yield and the risk-free rate; default
spread is denoted by DS and measured by the difference between BAA and AAA corporate

9We download the data for market return and realized variance from Amit Goyal’s webpage. SVAR is the
logarithm of realized stock variance.

10We only tabulate the figures for 3, 12, and 24 months for better visualization.
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bond yield; the dividend-to-price ratio is denoted by DP that is calculated by taking the log
difference between dividend and price from the market portfolio, and in f l is the inflation that
is the Consumer Price Index.11

Panel B in Table 1 shows the results for multiple predictive regressions. While controlling
benchmark state variables, ∆CCB remains significantly negative forecasting power for IDG,
CFNAI, and RMKT at 12 and longer horizons. Also, the results for testing ∆CCB forecasting
power on the future market volatility is consistent with the aforementioned evidence in the
coefficients correlation. The five-year daily cumulative ∆CCB has compelling positive fore-
castability for future market volatility even after controlling for well-known state variables.

In sum, backward-looking cybercrime news coverage predicts a worsening of future aggre-
gate economic activity (negative forecastability on IPG and CFNAI) and investment opportu-
nities (negative/positive forecastability on RMKT /SVAR). Hence, as cybercrime issues become
more critical garnering increased coverage in the news, investors’ future investment opportuni-
ties decrease, primarily through higher levels of volatility but in addition, though to a limited
extent, worse future stock market returns.12 We conclude that the cybercrime news index con-
tains legitimate characteristics of an ICAPM state variable. This has the important implication
that since cybercrime forecasts negative changes in both economic activity and investment op-
portunities in a time-series sense, its innovations should earn a negative risk premium in the
cross-section of stocks. The rest of the paper addresses this implication in detail.

2.3 Cybercrime news shock

Following the standard procedure of calculating news-based risk shocks in the literature,13 we
apply an AR (6) model to extract the cybercrime news innovations as the measure of cybercrime
shock (CCA). The first column in Table 2 shows that the CCB is somewhat persistent, with
AR(1) coefficient being 0.68. Nevertheless, we reject at 1% level the null hypothesis that CCB

has a unit root. To further investigate the potential correlation between the cybercrime news
measure and other benchmark economic risk variables, the second column in the Table shows
the results by adding ∆V IX and ∆EPU as additional controls in the AR(6) model. Indeed, our
cybercrime news measure is not related to ∆V IX and ∆EPU . That is, firstly, we estimate

CCBt = a+bi

6

∑
i=1

CCBt−i + ε
CCB
t (3)

where εCCB
t is the cybercrime news attention innovations. We select one year as backward

rolling window with approximately 365 daily CCB data. Secondly, for each rolling regression

11We download these state variables from Amit Goyal’s webpage.
12In online appendix, for robustness, we also conduct a validation test for ∆CCB j, it shows strong positive

forecasting on the daily realized variance of S&P 500 that is estimated by using tick data from TAQ.
13See related studies by Brogaard and Detzel (2015) and Engle et al. (2020).
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sample data, we standardized εCCB
t as follows:

CCAt =
εCCB

t − ε̄CCB
t

σ
εCCB

t

(4)

where ε̄CCB
t is the mean of cybercrime news innovation in each rolling regression sample and

the σ
εCCB

t
is the standard deviation. We define CCAt as the measure of cybercrime news at-

tention shock. Throughout the paper, we estimate the CCAt based on monthly updated rolling
regressions rather than the whole sample to ensure that we do not include any future informa-
tion in the following tests.14

We examine all common stocks (share codes 10 and 11) traded on the NYSE, Amex, and
Nasdaq exchanges from January 1998 through December 2021. The daily and monthly return
data are from the CRSP, and we adjust stock returns for delisting effects following Shumway
(1997). Following Amihud (2002) and many other studies, we eliminate stocks with a price
per share less than $5. Financial variables are obtained from the merged CRSP-Compustat
database. Analysts’ earnings forecasts come from the Institutional Brokers’ Estimate System
(I/B/E/S) data set. Google search variable (SVI) is downloaded from the Google open API.
Benchmark pricing factors and testing portfolios are downloaded from related data libraries.15

3 Cross-Sectional Asset Pricing Results

We conduct both parametric and non-parametric tests to assess the predictive power of cyber-
crime beta for future stock returns. We begin with univariate portfolio-level analyses before
moving on to bivariate portfolio-level analyses to confirm the power of the cybercrime beta af-
ter controlling for well-known risk factors. We then present cross-sectional regression results.
Finally, we replicate our main findings using cross-sections of equity portfolios as test assets.

3.1 Cybercrime news attention shock exposures

The exposures to cybercrime of individual stocks are obtained from one-year rolling regressions
of daily excess stock returns on innovations in the TRMI cybercrime news index. Our specific
procedure is as follows:

First, we compute normalised innovations in the cybercrime series as equations (3) and
(4). We consider innovations to this series as it exhibits a strong first-order correlation (of

14This standardization also benefits the following beta estimation will be more comparable since the cyber-
crime news coverage is different as technological progress changes dramatically in the sample period (from 1998
to 2021). For example, Figure 1 shows that samples after 2005 have relatively more cybercrime news stories.
Therefore, standardization is helpful to make each rolling regression sample has the same scale, particularly zero
mean and unit standard deviation.

15We thank Kenneth R. French, Robert F. Stambaugh, and Lu Zhang for providing open sources of pricing
factor data.
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around +0.8 over the full sample). The sample starts on January 1st, 1998, so our first rolling
window runs from this date until December 31st, 1998. 16

Second, for each stock, we regress daily returns on the market return and the cybercrime
news innovations series over the same one-year window:

Ri,t = αi +βMKT,iRMKT,t +βCCA,iCCAt + εi,t (5)

where βCCA is the estimated cybercrime beta. We require at least 60 trading days for a stock
to be included. We only control for the market factor since Liu et al. (2021) argue that the
CAPM outperforms more complicated models in testing zero alphas from a market efficiency
perspective.17 Nevertheless, we control for many benchmark factors in subsequent portfolio
sorting analyses.

Stocks with a negative βCCA,i suffer poor returns when there are positive innovations in
the cybercrime news coverage (CCB). Stocks with positive sensitivities to cybercrime news
attention are hedging stocks that offer insurance against positive shocks in cybercrime news.
When the public’s awareness of cybercrime increases from the news media report, these stocks
offer positive returns. Such hedging stocks should command a high price and hence offer a low-
risk premium if investors are concerned about cybercrime negatively shifting future economic
conditions or investment opportunity set. Conversely, stocks with negative βCCA,i are more
risky and exposed to cyber-related crimes, so those should command a positive risk premium.

The third step is to allocate each stock to one of five portfolios and compute the returns on
these cybercrime exposures sorted portfolios in January 1999, the month following portfolio
formation. All portfolios are value-weighted and we use NYSE stock break-points throughout.

We then move the sample forward one calendar month, re-estimate both the cybercrime
innovations series and the firm-level exposures to cybercrime, and compute next-month portfo-
lio returns. We continue until the sample is exhausted in December 2021. This rolling-window
approach means that all estimates are based on information available to investors in real-time
with no look-ahead bias. It also accounts for the increasing level and volatility of the TRMI cy-
bercrime index over our sample. Standardising the innovations using full-sample data as done
by Jamilov et al. (2021) is potentially problematic given that the daily change in the TRMI
index has a standard deviation of XXX in 1998 but YYY in 2021.18

The left-hand panel of Table 3 presents the univariate portfolio results. For each month,
we form five portfolios by sorting individual stocks based on cybercrime beta (βCCA). Portfolio
1 contains stocks with the lowest (most negative) βCCA during the past month, and portfolio

16We use an AR(6) model as this reduces the autocorrelation issue, controls for potential day-of-the-week
effect, and results in standardised innovations that pass both ADF and KPSS stationarity tests in each rolling
window.

17The backward-looking rolling regression with the CAPM model is also suggested by Barroso et al. (2021) to
capture the conditional relationship between the state variable and the tested variables. We also estimate the βCCA,i
by using FF3 and CARHART Model, and the results are barely changed.

18Standardization with full sample information contains look-ahead bias.
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5 contains stocks with the highest (most positive) βCCA. The first column reports the average
βCCA for each portfolio using full-sample breakpoints and an equal number of stocks in each
portfolio. The second column presents the average value-weighted excess return and associated
t-statistics for each portfolio. The last row reports these for the high-minus-low portfolio (P5-
P1).

The first column of Table 3 shows that there is significant cross-sectional variation in the
average values of cybercrime betas as we move from portfolio 1 to portfolio 5. The average
beta rises monotonically from -0.23 to +0.23. Stocks in the central portfolio, P3, have mean
cybercrime betas very close to zero. The symmetry of the mean cybercrime betas across the
portfolios is striking (and is not greatly affected by using more or fewer portfolios).

The second row shows that next-month average excess returns decrease monotonically
from 0.94% to 0.34% per month when moving from the lowest to the highest βCCA portfolios.
The average return difference between highest and lowest beta portfolios is -0.60% per month
with a Newey and West (1987) t-statistic of -2.66.

The remainder columns in the left panel present the magnitude and statistical significance
of risk-adjusted returns (alphas) from three four factor models: (1) the Fama-French three
factor model (α3), (2) the Fama-French five factor (α5) (3) the Fama-French five factor plus the
momentum factor (α6), and (4) the Fama-French five factor model plus momentum, short-term
and long-term reversal factors (α8). Results are quite insensitive to the specific factor model
used. Mean value-weighted alphas decline monotonically from around 0.3% for Portfolio 1
(low cybercrime beta) to around -0.4% for Portfolio 5 (high cybercrime beta). The alphas
earned by Portfolio 1 are marginally statistically significant with Newey-West t-statistics of
around 2.0. The alphas of high cyber-risk beta stocks (Portfolio 5) are statistically significant
with t-statistics in excess of 2.4. The high-minus-low portfolio mean alpha is also stable at
around -0.60% and is strongly statistically significant for all four alternative factor models.

3.2 Cybercrime news-driven hedging demand

The results of univariate portfolio analysis for βCCA are consistent with the theoretical predic-
tion in ICAPM, in which investors pay a higher price for stocks having high βCCA to hedge
future bad states. In this subsection, we investigate investors’ trading behaviors subject to the
aforementioned statement about the news-driven state variable. As investors read an increasing
number of stories related to cybercrime in the news, their trading decisions need to incorporate
the implied information from the cybercrime narratives. Therefore, in line with the investor
demand mechanism in ICAPM, high cybercrime beta stocks exert more buying orders placed
by investors. Inspired by studies that explore news-driven trades (Huang et al., 2020; Fisher
et al., 2022; Jeon et al., 2022), we use tick-trading data from TAQ to create proxies to verify
the cybercrime news-driven trading behaviors, particularly investors place more buying orders
as hedging demand on high cybercrime beta stocks.
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To examine investors’ buy-initiated orders, we use signed dollar-trading volume from
TAQ.19 Specifically, we create three measures as proxies of investors’ buy behaviors. First,
we calculate the stock buy fraction (BF) as the total buy trading volume over the total vol-
ume. Second, we create a relative measure which is the difference between buy trading volume
and sell trading volume (BS). Additionally, we measure investors’ buy orders by taking the
logarithm of the total buy trading volume (BV ).20

On the one hand, we identify cybercrime news-driven orders by running univariate regres-
sions for each stock in each cybercrime beta estimation rolling sample.

yi,t = γ0 + γi,CCACCAt +ui,t , yi,t ∈ {BF,BS,BV} (6)

where γi,CCA is the stock sensitivity of buying orders to cybercrime news attention shock. The
higher the value of γCCA, the more buying orders are placed by investors who read an increase
in cybercrime news narratives.

On the other hand, to investigate the relationship between cybercrime news-driven buy
orders and cybercrime beta stocks, we first sort quintile portfolios based on βCCA in each month
and calculate the contemporaneous average γCCA in each cybercrime beta portfolio. Panel A in
Table 4 presents the non-parametric results. There are strongly monotonic increasing patterns
for the sensitivity of buy orders to cybercrime news attention shock (γCCA)from P1 to P5 in all
three measures of investors’ buy-initiated orders. The results in HL portfolio for γCCA are also
positive and statistically significant for BS and BV .21 Therefore, consistent with the investors’
hedging demand statement in ICAPM, investors place more cybercrime news-driven buy orders
as hedging demand on high cybercrime beta stocks contemporaneously.

Second, to further disentangle potential effects that may confound the positive relationship
between βCCA and γCCA, we conduct Fama-Macbeth cross-sectional regressions as parametric
analysis.22 Panel B in Table 4 displays the results consistent with the model-free results in Panel
A. Columns (1), (3), and (5) are univariate regression results. All three measures positively
relate to βCCA. The results of adding control variables in columns (2), (4), and (6) do not
comprise the strong implication that stocks with high cybercrime beta are bought more by
investors. The high demand for high cybercrime beta stocks is induced by the high cybercrime
news attention.

All in all, stocks’ sensitivity of buy orders to cybercrime news attention accords with the
stocks’ cybercrime beta. Stocks with high cybercrime beta are contemporaneously demanded
more by investors who place more buy orders on these stocks for hedging purposes stated in
ICAPM.

19The algorithm used to sign trading orders follows the method by Lee and Ready (1991).
20For stock dollar-trading volume, we divide it by $1000,000.
21The HL portfolio is calculated by taking the difference between P5 and P1 for the average of γCCA in each

portfolio.
22In untabulated tables, we also conduct pooled or fixed effect regressions, and the results are barely changed

at all.
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3.3 Cybercrime tracking portfolio construction

Having demonstrated that cybercrime betas are capable of predicting the cross-sectional varia-
tion in future stock returns, we now construct a tracking factor that captures the returns associ-
ated with cybercrime.

Non-traded factors - including cybercrime news - which capture fundamental risks in the
economy ought to explain the cross-section of expected returns. However, measured changes in
these factors contain measurement errors. To reduce factor noise, factor-mimicking or tracking
portfolios containing traded assets that represent the underlying non-traded factors are widely
used (Huberman et al., 1987; Breeden et al., 1989; Giglio and Xiu, 2021). We follow the
time-series approach of Lamont (2001) and regress the non-traded cybercrime series on con-
temporaneous returns of traded assets (Zt), using the fitted values from this regression as a
traded asset-based proxy for cybercrime for each one-year long rolling regression window:

CCAt = c+b′Zt +ut (7)

The traded assets we use are the five portfolios sorted according to sensitivities to the cy-
bercrime news attention described in the previous section. Essentially, we apply the technique
of economic tracking factor construction developed by Lamont (2001) with ex-ante tracking
rather than studies using ex-post constructions (Ang et al., 2006; Engle et al., 2020). Specif-
ically, by the end of each portfolio formation month, we know which stocks are in portfolio
5 for hedging and which stocks are sorted into other portfolios (1 - 4). Hence, from the first
day of each rolling regression sample, we sort stocks into five portfolios by using the portfolio
number based on βCCA obtained in the portfolio formation month (the last day in each rolling
regression sample). In other words, the base assets Zt - five portfolios only contain information
up to the last day of each rolling regression without any future information.23 Because the
traded assets are excess returns, the coefficients in the vector b can be interpreted as weights
in the zero-cost portfolio. For each regression window, we construct the daily tracking factor
return factor, b′Zt , which we denote TCCAt .

TCCAt = b′Zt (8)

The tracking portfolio TCCA contains the portfolio of asset returns maximally correlated
with realized innovations in cybercrime news coverage using a set of basis assets with differ-
ent exposures to cybercrime news attention (βCCA). Accordingly, we are able to examine the
contemporaneous relationship between average returns and factor loadings of cybercrime news
attention in a manner of portfolio return. By virtue of this mimicking factor, the primary advan-

23For example, the first rolling regressions use data from 1/1/1998 to 12/31/1998. Therefore, on 12/31/1998,
we have βCCA for all stocks and sort them into five portfolios. Next, we take each stock with related portfolio
numbers to form daily portfolios from 1/1/1998 to 12/31/1998. Consequently, we have portfolios that mimic
CCA.
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tage of using TCCA in the following analysis to measure the aggregate cybercrime risk is that
we have a good approximation of innovations in cybercrime news, and allows us to alleviate
the issue caused by hidden noises in the news data.

Panel A in Figure 3 presents the average daily Pearson correlation between CCAt and the
cybercrime news attention tracking portfolio returns is around 0.78 from the 264 regression
windows. The correlation ranges from 0.52 to 0.92. Figure B displays time-varying weights
(b) for the five portfolios. On average, the weights of portfolio 5 are always positive and the
average weight on portfolio 5 is close to +0.95. In the meantime, the weights of portfolio 1
are always negative and the average weight on portfolio 1 is close to -0.86. Additionally, the
average weights on each portfolio are also monotonically increasing. Together, these results
suggest that the tracking portfolio indeed efficiently tracks innovations in cybercrime news
(CCA) in a manner consistent with expectations.

3.3.1 Tracking factor performance

We next repeat the procedure of the previous section but now estimate time-varying stock-
level sensitivities to the cybercrime news attention tracking factor (TCCAt), rather than to the
non-traded cybercrime news attention proxy itself.

Ri,t = αi +βMKT,iRMKT,t +βTCCA,iTCCAt + εi,t (9)

Rolling one-year regressions of returns on the market excess return and the TCCA gener-
ate cybercrime tracking betas (denoted βTCCA,i) that are used to allocate stocks to one of five
portfolios. We then examine the returns on these portfolios in the following month. The results,
reported in the right-hand panel of Table 3, are very similar to those in the left-hand panel. As
we move from Portfolio 1 (smallest betas) to Portfolio 5 (largest betas) value-weighted aver-
age portfolio betas rise from -0.66 to +0.81, again in a relatively symmetric pattern. Similarly,
next-month average excess returns decrease monotonically from 1.08% to 0.14% per month.
The returns of individual stocks in Portfolio 1 correlate negatively with shocks to cybercrime
news mimicked by TCCA and so risk-averse investors require extra higher expected returns to
hold these stocks. Conversely, as the stocks in Portfolio 5 correlate positively with increases
shocks in cybercrime they are viewed as hedge stocks that perform well in times of increased
risk related to cybercrime. Hence investors pay higher prices for these stocks and willingly
accept lower returns.

The average return difference between the highest and lowest beta portfolios is -0.95% per
month with a Newey and West (1987) t-statistic of -2.93. Alpha analysis reported in columns
3-6 of Panel B also replicates the conclusions based on cybercrime betas (βCCA). Irrespective
of the factor model used, monthly alphas from Portfolio 1 are around 0.4% and statistically
significant around 1%, falling to around -0.60% (with very large t-statistics) for Portfolio 5.
The high-minus-low portfolio return alphas are only slightly below the raw return and are sta-
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tistically significant.
This significantly negative cybercrime premium is much as predicted by the intertemporal

capital asset pricing model of Merton (1973). An unexpected increase in cybercrime adversely
affects future investment and consumption opportunities. Investors prefer to hold stocks whose
returns increase upon such unfavorable events and thus hedge their exposures to cybercrime.
That is, they compensate for reduced consumption and future investment opportunities by hold-
ing stocks that positively correlate with cybercrime. This intertemporal hedging demand im-
plies that investors are willing to pay higher prices and accept lower returns for stocks with
higher cybercrime betas.

It is noticeable from Table 3 that irrespective of the pricing factor model used, the majority
of the negative alpha in the high-minus-low portfolio comes from the high cybercrime beta
leg (Portfolio 5). This proportion is never below 60% and in the case of the Fama-French
five-factor model is as high as 64%. The alpha from the high beta leg is always statistically
significant while the low beta leg (Portfolio 1) provides an alpha that is always marginally
significant. Stocks in portfolio 5 are the hedges, that tend to offer high payoffs when cybercrime
news increases and these stocks offer typically low expected returns as a result of this hedge
characteristic.

3.4 The effect of cybersecurity demand across industries

This section examines the significance of cybercrime risk premium for stocks across different
industries. We group stocks into two categories that depend on the importance of cyberber-
secruity in different industries based on the guidelines provided by WEF (2016) and Cyberseu-
rityguide.org. This is an open-source website and provides cybersecurity educational informa-
tion. Based on the industry analysis in Cyberseurityguide.org and Fama-French industry SIC
codes, firms in Consumer nondurables, Energy, Hightech, Telecommunication, and Health-
care sectors are classified as heavily demanding cybersecurity. The other remaining sectors are
classified as less demanding of cybersecurity. We now conduct dependent bivariate sorting to
control for the effect of demand for cybersecurity. Within each cybersecurity group, we sort
stocks in to five portfolios based on βTCCA.

Table 4 reports the alphas and associated t-statistics for each portfolio using the usual
factor models. The right panel reports results for stocks in the industries where the demand for
cybersecurity is high, there is evidence that these firms contribute to significantly positive risk
premium in portfolio 1. While the portfolio 5 with the highest cybercrime tracking beta offer
negative alpha, it is only marginal significant at 10% level.

Conversely, the left panel presents evidence for stocks in the industries where cyberse-
curity is less critical. These firms generate alphas more consistent with our broader findings
to-date. Alphas decline (non-monotonically) as betas rise, and these are significantly negative
for the portfolios comprised of the stocks with the highest sensitivities. A high-minus-low port-
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folio based on stocks demanding less cybersecurity yields a monthly alpha close to -1% and
again, over 60% of this alpha comes from Portfolio 5.

3.5 Average stock characteristics and tracking factor betas

In this section, we determine the average characteristics of stocks with high and low cybercrime
tracking factor betas (βTCCA). We use Fama-MacBeth (1973) cross-sectional regressions of
cybercrime tracking factor betas for each firm in the sample on stock-level characteristics and
risk factors:

βTCCA,i,t = c+δXi,t + εi,t (10)

where X contains market betas (βMKT ), market volatility betas (βV IX ) estimated by fol-
lowing the study by Ang et al. (2006) , economic policy uncertainty betas (βEPU ) estimated
by using the economic policy uncertainty index (EPU, Baker et al. (2016) ) augmented from
the CAPM , the log of market capitalisation (SIZE), book-to-market ratio (BM), operating
profit (OP), investment (I/A) (Fama and French, 2015), short-term reversal (LRET) (Jegadeesh,
1990), Amihud illiquidity (ILLIQ), idiosyncratic risk (Ang et al., 2006),24 and momentum
(MOM) (Jegadeesh and Titman, 1993). Additionally, we include analyst forecast variables
such as the number of analysts following a stock and their forecast dispersion (Diether et al.,
2002).

Column 1 of Table Table 5 shows that the average slope coefficient on the market beta
is positive and significant, implying that stocks with high cybercrime beta have a high mar-
ket beta. This finding is consistent with Freazzini and Pedersen’s (2014) finding, evidence
that stocks have lower one-month ahead return. Column (4) and (5) report that the average
slope coefficients on size and BM is significantly negative and positive, respectively. There-
fore, stocks with high cybercrime beta are large and value stocks. The size result is consistent
with Fama-French (1992,1993) that small stocks have higher expected returns than big stocks.
However, the BM result shares a different view of value stocks having higher expected returns
than growth stocks.

As presented in Column (9), the average slope on illiquidity is negative and significant,
indicating that stocks with high cybercrime beta are liquid and the low cybercrime beta stocks
are illiquid. This result is consistent with the study by Amihud (2002) that explores illiquid
stocks generate higher one-month ahead returns as the liquidity risk premium. Our high βTCCA

stocks serve as the hedging assets; therefore, liquidity as an implementable trading purpose is
not a major concern in our hedging argument.

Column (11) displays the average slope on momentum is negative, indicating the cyber-
crime hedging stocks (higher βTCCA) underperform in the past 11 months. We do not find

24We follow the same rationale in these studies, however using Fama-French five-factor rather the 3-factor
model.
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strong supportive evidence for the relevance of other fundamental variables.
Nevertheless, the final column in Table 5 shows that when we include all variables si-

multaneously, only βMKT , BM, illiquidity, and momentum survive to have previously strong
cross-sectional relation with βTCCA. Overall, stocks with high cybercrime beta are liquid, have
large market beta, high BM ratio, and lower past 11-month return performance.

3.6 Bivariate portfolio-level analysis

We next examine the relation between cybercrime sensitivities and next-month stock returns
controlling for well-known cross-sectional return predictors. We perform bivariate portfolio
sorts on the cybercrime tracking beta (βTCCA) in combination with the market capitalization
(SIZE), book-to-market ratio (BM), operating profitability (OP), investment (I/A), market beta
(βMKT ), market volatility beta (βV IX ), economic policy uncertainty beta (βEPU ), momentum
(MOM), short-term reversal (ST ), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), and an-
alyst dispersion (DISP). We first form five portfolios based on the predictor variables. Then,
within each predictor portfolio, we sort stocks into five portfolios based on the cybercrime beta
(βTCCA) so that portfolio 1 (portfolio 5) contains stocks with the lowest (highest) cybercrime
beta values. We then average the next month’s value-weighted portfolio returns across the five
predictor portfolios for each of the five cybercrime beta portfolios. This creates a set of five
portfolios with very similar levels of the predictor variable but which differ by cybercrime beta.
We report value-weighted portfolio results from these conditional bivariate sorts in Table 6.

The first column of Table 6 shows that after controlling for size, the α8 controlling FF five-
factors, momentum, short-term and long-term reversal factors tends to fall as the cybercrime
tracking portfolio beta increases from portfolio 1 to 5. The high-minus-low portfolio alpha is
about -0.7% per month with a Newey-West t-statistic in excess of 2.3. Subsequent columns of
Table 6 show a very similar pattern and in most cases, the high-minus-low alpha is even greater
than that seen when controlling for size. Statistical significance is strong for all predictors. We
conclude therefore that none of the predictors explains the high (low) returns on low cybercrime
beta stocks.

3.7 Stock level cross-sectional regressions

We have tested the ability of cybercrime tracking betas (βTCCA) to determine the cross-section
of future returns at the portfolio level. Non-parametric portfolio-level analysis has the advan-
tage of not imposing a specific functional form on the relation between βTCCA and subsequent
returns. However, it also has at least two disadvantages. First, aggregation loses a large amount
of information in the cross-section via aggregation, and second, it is difficult to control for
more than one other factor simultaneously. Hence, as is standard, we now examine the cross-
sectional relation between cybercrime betas and expected returns at the stock level using Fama
and MacBeth (1973) regressions of the following form:
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Ri,t+1 = λ0 +λ1βTCCAi,t +λ
′Xi,t + εi,t (11)

where Ri,t+1 is the realized excess return of stock i in month t + 1, βTCCAi,t is the cyber-
crime tracking portfolio beta of stock i in month t, and Xi,t is a collection of stock-specific
control variables observable at time t for stock i. X contains market betas (βMKT ), market
volatility betas (βV IX ), economic policy uncertainty betas (βEPU ), the log of market capitaliza-
tion (SIZE), book-to-market ratio (BM), operating profit (OP), investment (I/A), lagged returns
(LRET), illiquidity (ILLIQ), idiosyncratic risk (IVOL), momentum (MOM), and the disper-
sion of analysts forecasts (DISP). The cross-sectional regressions are estimated monthly from
January 1999 to December 2021.

The univariate regression results reported in the first column of the left panel in Table 7
indicate a negative and statistically significant relation between the cybercrime beta and the
cross-section of future stock returns. The average slope is -0.46 with a Newey-West t-statistic
of 5% significance. The second and third columns shows that adding several standard control
factors only reduces the magnitude of this coefficient slightly, and it remains statistically sig-
nificant. The average stock in Portfolio 1 has a cybercrime beta of -0.66, while in Portfolio
5, this rises to 0.0.81 (see Table 3).25 Were a stock to move from Portfolio 1 to Portfolio 5,
all other things equal, the expected return of that stock would decrease by around 0.68% per
month (-0.46×(0.66-(-0.81)).

We add industry controls in the right-hand panel of Table 7. The results are barely changed
from those without industry controls. In an unreported table, we also test the long-term pre-
dictive power of cybercrime tracking beta with 6, 9, and 12 months ahead of returns. In sum,
βTCCA negatively predicts the next 6, 9, and up to 11-month future monthly returns and re-
mains marginal predictability with a 10% significant level for the 12-month ahead monthly
return. This long-term predictive power of cybercrime tracking factor beta is consistent with
the extant study by Florackis et al. (2022) that uses the firm-level measure of cybersecurity risk.

3.8 Power of βTCCA for cross-sectional equity portfolios

To be consistent with earlier findings from individual stocks, we investigate if cybercrime track-
ing beta has the same predictive power for the cross-section of equity portfolios. We obtain
portfolio daily return data from Kenneth French’s data library. The portfolios we use in this
test include 49 industry portfolios and three sets of 10×10 portfolios that are bivariate sorts
based on size and book-to-market, size and investment, and size and profitability such that we
consider 349 portfolios in the estimation. These portfolios are widely used in the literature
since they generate significant cross-sectional differences in portfolio expected returns.

Following the estimation procedure in sections 3.1 and 3.2.1, we first estimate rolling

25Since illiquidity may have a high correlation with size, we control these two variables separately for a clear
presentation. However, the results are mostly the same if we control size and illiquidity in the same model.
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cybercrime betas from regressions in the form of:

rp,t = αi +βTCCA,pTCCAt +∑βp, j f j,t + εi,t , j ∈ {MKT,SMB,HML,CMA,RMW} (12)

for each test portfolio. We control for Fama-French five factors and βTCCA,p is the cybercrime
tracking beta for each portfolio.26

Table 8 presents the univariate portfolio sorting results. Notably, the quintile portfolios
sorted by βTCCA estimated by cross-sectional portfolio returns have consistent results with the
ones by using individual stock data. The first column shows how the average cybercrime track-
ing beta increases from portfolio 1 to 5. The one-month ahead expected returns decrease mono-
tonically when moving from the lowest to the highest βTCCA. The HL portfolio generates -0.3%
negative expected returns. The difference in risk-adjusted returns (α) between high βTCCA and
low βTCCA portfolios is significantly negative, and the magnitude is about −0.25% and consis-
tent across different pricing models.27 Again, we note that the alpha is concentrated in the high
beta portfolio.

Overall, the results in Table 8 indicate that the cross-sectional return difference induced by
high βTCCA and low βTCCA estimated on equity portfolio returns are negative and statistically
significant after controlling classical pricing factors. Hence, we conclude that the cybercrime
tracking beta is priced not only in the cross-section of individual stocks but also in the cross-
section of equity portfolios. One can also imply that hedging against cybercrime can be imple-
mented via cross-sectional portfolios rather than diving into the entire stock universe, which is
relatively costly.

3.9 Ex-post cybercrime risk pricing factor

We have presented evidence that the sensitivities of stock returns to a tradeable factor that tracks
innovations in cybercrime news coverage predict the cross-sectional variation in future stock
returns. We now test the ability of an ex-post cybercrime pricing factor to explain the returns
on large numbers of equity portfolios.

We follow the methodological rationale from the study by Lamont (2001) and implement
the similar practice used by Ang et al. (2006) and Engle et al. (2020) to construct the ex-post
pricing factor as follows. From each rolling window one-year regression of equation (7), we
estimate weights, bt , on returns from each candidate value-weighted traded asset portfolio, Zt ,
that track the risk exposure to innovations in the cybercrime news series. Therefore, we have
portfolio weights at the end of each portfolio formation period (see Panel B in Figure 3 for
time-varying weights of base assets). We then calculate the ex-post pricing factor, FCCAt+1,
as:

26The results are not sensitive to use the other models for our beta estimation.
27We also use q-factor to test the cross-sectional predictive power of βTCCA estimated by 349 equity portfolios.

The risk-adjusted return based on the q-factor is αq.
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FCCAt+1 = b′t ×Rt+1 (13)

where Rt+1 = rβCCA
p,t+1 is the vector of the five portfolio returns in the month following the esti-

mation window. For example, in step 1, we estimate the weights b′ using data from 01/01/1998
to 12/31/1998 by using equation (7). In step 2, we multiply b′ by the vector of returns earned
by the five value-weighted portfolio returns in January 1999 sorted by βCCA to obtain the cy-
bercrime pricing factor return for January 1999. We then roll forwards one calendar month,
estimating weights over the period 2/1/1998 to 1/31/1999 and multiplying these by returns
earned in February 1999 to obtain the pricing factor return for February 1999. We continue to
roll forwards by one month until December 2021.28

The first column of Table 9 shows that the ex-post cybercrime news attention pricing factor
earns a -0.44% per month, with an associated t-statistic of 3.51. Subsequent columns show that
while this factor’s returns are marginally correlated with other benchmark pricing factors, it
bears little relation to the returns of other commonly used factors and a large unexplained
component remains irrespective of the benchmark factors included in the regressions. Harvey
et al. (2016) argue that the usual five percent level is too low a threshold when testing for
statistical significance of a new pricing factor because of data mining concerns and the large
extant body of research examining the cross-section of expected returns. They argue the case
for higher requirements before we can accept empirical results as evidence of true economic
phenomena. Specifically, they suggest that a new factor needs an associated t-statistic greater
than three. It is then comforting to note that the average monthly return of the tracking factor
has an associated Newey-West t-statistic of about -3.20.

3.10 The price of cybercrime risk

To estimate the unconditional factor risk premium λFCCA on the ex-post mimicking cybercrime
factor FCCA, we source monthly returns based on the same 349 portfolios used in section 4.2.6.

We then estimate two-step Fama-Macbeth (1973) regressions including the standard Fama-
French five factors, augmented by the cybercrime pricing factor:

ri,t = αp +∑βiλi +βFCCAλFCCA + εi,t , i ∈ {MKT,SMB,HML,CMA,RMW} (14)

where ri,t is the excess return on each of the 349 portfolios. In the first stage, we estimate betas
using the full sample from January 1999 to December 2021. In the second stage, we conduct
cross-sectional regression to estimate factor premia. Our interest is in λFCCA, the price of
cybercrime risk. The results are presented in Table 10. The first column uses the Fama-French

28We also construct the ex-post mimicking pricing factor by following the classical method developed by Fama
and French (1993). The result is very similar.

21



five factors to price the 349 portfolios. All the factors are statistically significant at conventional
levels, but as usual, some of the prices are not of the predicted sign. More relevant for this
paper, column 2 augments the regression with pricing factor betas. The regression results
suggest a price of cybercrime risk of -2.82% per month. The standard deviation of βFCCA is
0.12. Therefore, a two standard deviation increase in βFCCA is associated with a decrease in the
portfolio return of a little over 0.68% per month.

Similarly, the right-hand panel in Table 10 presents results based on the q-factor model.
The results are consistent with the Fama-French model test in the left panel. On average, the
price of cybercrime risk is about -3.95% per month in the 349 portfolios. Furthermore, a two
standard deviations increase in βFCCA is associated with a decrease in the portfolio return of
about 1.1% (2×0.144×-3.95%=-1.1%). All in all, the cybercrime mimicking factor induce
significantly negative risk premia that are attributed to exposure to the cybercrime risk that is
quantified by FCCA.

3.11 Robustness checks

3.11.1 Google search trend data

The basis of our analysis has been the TRMI cybercrime news series, essentially a measure
of the supply of information about cybercrime in the press. This section shows that an alter-
native, publicly-available measure of the demand for information about cybercrime generates
very similar results. Specifically, we use daily Google search trend data on the single key-
word“cybercrime” from 01/01/2007 to 12/31/2021, an interval considerably shorter than the
one used for TRMI-based analysis but still long enough to provide meaningful results. We take
the first log difference of the Google search trend measure as a measure of investors’ demand
for cybercrime-related issues.

We estimate the cybercrime Google cybercrime beta as follows:

∆SV It = logSV It − logSV It−1

Ri,t = αi +βMKT,iRMKT,t +βSV I,i∆SV It (15)

thus, we conduct the portfolio analysis and contract the ex-ante portfolio tracking factor (de-
noted by T SV I)in the Google Search Trend data universe. Table 11 shows the results are very
consistent with the ones in Table 3 as we have done by using the TRMI cybercrime news index.
Additionally, we also repeat the construction of the ex-post tracking factor. In an untabulated
appendix, the results are consistent with the tracking factor created by using news-measured
cybercrime risk.29

We conclude that our results are insensitive to considering innovations in the supply of

29Please find the untabulated tables from the Online Appendix
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information on cybercrime from the TRMI data series, or innovations in the demand for cy-
bercrime information from Google search data. In both cases, hedging stocks that offer better
returns when such shocks occur command a high price and hence offer lower returns, on aver-
age.

3.11.2 Alternative pricing factor construction methods

In this sub-section, we demonstrate the insensitivity of our results to constructing the pricing
factor using the Fama-French approach, rather than the regression approach detailed in section
3.9. We also continue to demonstrate the consistency of our results when using Google search
trend proxies of cybercrime.

The left panel of Table IV in the Online Appendix reports the results of constructing a
Fama-French-style pricing factor using estimates of stocks sensitivities to innovations in the
TRMI series (βCCA). Stocks are sorted into intersections of two portfolios according to mar-
ket capitalization using NYSE breakpoints and three portfolios according to cybercrime news
sensitivities. The factor is then constructed as the average return in the large and small cap
high sensitivities portfolios minus the average return in the large and small cap low sensitivities
portfolios. The average return on this factor is -0.373% per month with an associated t-statistic
of 2.81. The other columns in this panel show that this survives the inclusion of alternative
commonly-used factors.

The right-hand panel replicates this but uses sensitivities to the Google search trend of cy-
bercrime rather than innovations to TRMI’s cybercrime news series. The headline results show
that the pricing factor is economically large, statistically significant, and is not much affected by
accounting for other factors remains. However, compared with both the results in the left-hand
panel and those in Table 9, it is noticeable that several other factors are significantly related
to this version of the pricing factor. Nevertheless, including these only serves to increase the
magnitude of the pricing factor’s alpha.

When we repeat the 349 equity portfolio factor pricing tests, both of these alternative
factors prove to be highly significant. The TRMI-based Fama-French-style factor bears a coef-
ficient of -2.99 with an associated t-statistic of 4.03. A one standard deviation increase in β ˆCCA

is associated with a decrease in expected portfolio return of 0.71% per month. We conclude
that, if anything, our core findings from on a regression-based pricing factor are conservative.

3.11.3 Robust to only S&P 500 Stocks

We further investigate if our results are driven by small and illiquid stocks, which are not
implementable and suffer data mining issues stressed by Harvey et al. (2016). We re-create
Table 3 by only testing stocks from S&P 500. Table VI in the Online Appendix shows the
results even prevail in the cross-sectional large, liquid, and S&P 500 stocks. Therefore, the
results are convincing and implementable in line with the hedging story in ICAPM.
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4 Conclusion

This paper investigates the role of cybercrime in the cross-sectional pricing of individual stocks
and equity portfolios. Cybercrime is quantified by a news-based index provided by TRMI
though this specific choice of proxy series is not crucial, and we obtain similar results based on
simple and publicly-available Google search trends data.

More cybercrime-related issues reported in the news media forecast a worsening of future
investment opportunities, in particular higher levels of market volatility but also to a lesser
extent lower aggregate stock market returns. This suggests that our news-based measure of
cybercrime has characteristics of a state variable in the ICAPM of Merton (1973). If this
is the case, variations in stock exposures to innovations in cybercrime news should predict
cross-sectional variations in stock returns. Given that cybercrime forecasts a worsening of the
investment opportunity set and economic activity, cross-sectional returns should be lower as
the sensitivity of stock returns to cybercrime shocks increases.

We estimate beta exposures of US stocks to innovations in cybercrime news. Consistent
with an ICAPM interpretation, stocks that covary negatively with innovations in cybercrime
news (that is, firms that have negative cybercrime betas) on average offer high next period
returns. In contrast, stocks with positive betas hedge cybercrime shocks, paying off when
cybercrime news innovations are high, but offer poor next period returns on average.

Bivariate portfolio-level analyses and stock-level cross-sectional regressions that control
for well-known pricing effects, including size, book-to-market, momentum, short-term rever-
sal, liquidity, idiosyncratic volatility, dispersion in analysts’ earnings estimates, market volatil-
ity beta, economic policy uncertainty beta, investment, and profitability generate similar results.
After controlling for each of these variables one by one and then controlling for all variables
simultaneously, we provide evidence of a significantly negative link between cybercrime betas
and future stock returns.

Cybercrime betas predict a significant proportion of the cross-sectional dispersion in fu-
ture stock returns. The economic tracking factor analyses indicate an annualized risk-adjusted
return of -5.04%. These results hold when we instead consider equity portfolio exposures to
a cybercrime tracking factor. The important role of cybercrime hedging stocks is also demon-
strated when considering sub-samples of our data. Controlling for the level of dependence
of cybersecurity across 10 industries, the negative risk premium of hedging stocks is mainly
contributed by firms that require less cybersecurity.
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Appendix

A ICAPM and Cybercrime

Consider an economy populated by a representative investor facing an optimal consumption
and asset allocation problem continuously. There are N risky assets and one risk-free bond. A
risky asset i earns an instantaneous risky return and the risk-free bond earns an instantaneous
locally risk-free rate

dRi
t = µi,tdt +σi,tdwi,t

dBt = rtdt

where (w1,w2, . . . ,wN)
′ is a correlated N-dimensional Wiener. µi,t is the expected return, σi,t

the instantaneous volatility, rt the instantaneous risk-free rate. These quantities depend on CCB,
i.e., µi,t ≡ µi(z, t), σi,t ≡ σi(z, t), and rt ≡ r(z, t). CCB is exogenous and modeled by a diffusion
process:

dzt = µz,tdt +σz,tdzt

where zt is a one-dimensional Wiener process. For easy composition, The instantaneous risk
return is assumed to be uncorrelated with CCB in any instant time, i.e., Et [dwi,t ·dzt ] = 0. The
specification suggests that shocks to CCB affect asset returns.

The representative investor maximizes her lifetime utility by solving the optimal consump-
tion and investment problem subject to the intertemporal budget constraint:

Et

[
∞∫

s=t
e−ρ(s−t) c1−γ

s
1−γ

ds
]

.

ρ > 0 is the constant discount rate and γ > 1 the constant relative risk aversion. The investor
cares about and takes into account cybercrime news in her maximization. As a result, her
consumption and marginal utility of consumption (wealth) responds to the innovation of cy-
cbercrime news coverage (shock of cybercrimew news). It implies that CCB describes the
conditional distribution of stock returns the investor will face in the future or “shifts in the
investment opportunity set.”30

The value function V is the lifetime utility at optimum. It is a function of wealth Wt and
CCB zt at time t. Indeed, in our economy with the homothetic power preference, the value
function has the form

V (W,z) =
W 1−γ

1− γ
f (z). (16)

f (·) is a positive and differential function in CCB. Since the marginal utility of consumption

30We are concerned with the implication of cybercrime news attention shock and do not pursue in solving the
optimal consumption and portfolios for the representative investor. Given the power preference and the diffusion
return processes, the optimal consumption is proportional to wealth, the optimal portfolios are a sum of hedging
demand and myopic demand that are characterized by the value function and the investment opportunities (Merton,
1973)
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equals the marginal value of wealth, the stochastic discount factor Λt is

Λt = e−ρtVW (Wt ,zt) = e−ρtW−γ

t f (zt).

Note that CCB affects the marginal value of wealth as well as asset returns in equilibrium via
f (·). The asset pricing Euler equation implies31

Et [dRi
t ]− rtdt = β i

W,tdt ·λW,t +β i
z,tdt ·λz,t . (17)

The term λW,t = γσ2
W,t > 0 is the price of risk on aggregate wealth shocks (or “market risks”)

and λz,t = − ztVWz(Wt ,zt)
VW (Wt ,zt)

σ2
z,t is the price of risk of CCB. σW,t is the volatility of the aggregate

wealth process. As usual, the positive λW suggests that the risk-averse investor demands the
higher expected returns on assets that have more covariances with the shocks to aggregate
wealth (market). Whether or not the investor demands the higher expected returns on assets
that have more covariances with the innovation to CCB depends on the sign of the price of
risk of CCB, λz, which reflects how an increase in CCB changes the marginal value of wealth.
Maio and Stanta-Clara (2012) and Barroso, Boons, and Karehnke (2021) show the sign of λz is
essential for CCB to price a set assets in the cross section.

It is useful to know that the marginal value of wealth moves in the opposite direction
of the investor’s value function in response to changes in CCB, suggesting that the marginal
value of wealth is high when investment opportunities are poor.32 Suppose an increase in CCB

indicates “bad times” in the sense of poor investment opportunities (low output/production,
high volatilities/uncertainities) in the future. Then, the increase in zt will be not beneficial for
the investor, meaning Vz < 0, or equivalently, the increase in zt raises the marginal utility of

31The application of the asset pricing Euler equation gives

Et [dRi
t ]− rtdt = −Et

[
dRi

t · dΛt
Λt

]
= −WtVWW (Wt ,zt )

VW (Wt ,zt )
·Et

[
dRi

t · dWt
Wt

]
− ztVWz(Wt ,zt )

VW (Wt ,zt )
·Et

[
dRi

t · dzt
zt

]
= β i

W,tdt ·λW,t +β i
z,tdt ·λz,t

Since Et

[
dWt
Wt

· dzt
zt

]
= 0, betas in a bi-variate regression setting can be expressed as:

(
β i

W,t
β i

z,t

)
=

Et

[
dWt
Wt

]2
0

0 Et

[
dzt
zt

]2


−1

·

Et

[
dRi

t · dWt
Wt

]
Et

[
dRi

t · dzt
zt

] .

32By the value function (16), it is straightforward to show

∂V (W,z)
∂ z

=
W 1−γ

1− γ
f ′(z),

∂ 2V (W,z)
∂W∂ z

=W−γ f ′(z).

Given γ > 1, the marginal value of wealth is positive if the investor’s value function in response to changes in CCB
is negative.
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wealth, meaning ∂ 2V (W,z)
∂W∂ z = ∂

∂ z

(
∂V (W,z)

∂W

)
> 0.33 It leads to a negative price of risk of CCB

with λz < 0 since the margin value of wealth is positive.34 Therefore, assets that covary highly
with CCB have high prices driven by high demand and low expected returns. They have high
prices, because they have their highest payoff when CCB is higher, which are bad times; thus,
they are hedging assets. Analogously, an increase in CCB indicates “good times” in the sense
of good investment opportunities and give rise to a positive price of risk of CCB. Assets that
have covary highly with CCB have low prices and high expected returns; they are not useful for
hedging.

33For the risk-averse investor (γ > 1), she values an additional unit of dollar more when investment opportuni-
ties are poorer than when they are better. The reason is that it is more difficult for her to increase wealth through
investment when investment opportunities are poor.

34Alternatively, one can show
λz,t = − ztVWz(Wt ,zt )

VW (Wt ,zt )
σ2

z,t

= −zt
f ′(zt )
f (zt )

σ2
z,t

< 0

where f ′(zt)> 0 because Vz(w,z)< 0.
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Table1: State Variable Validation for ∆CCB
This table reports the state variable validation test results for cybercrime news coverage. ∆CCB is calculated
as the cumulative sum of daily change of cybercrime news coverage in a past five-year rolling window with
monthly updates. Pearson correlations between ∆CCB and proxies of future economic activity (IPG and
CFNAI) and investment opportunity set (rMKT and SVAR) at horizons 1, 3, 12, 24, 36, and 48 months ahead
are presented in Panel A. Results for multiple long-horizon regressions are reported in Panel B. The other
well-known state variables are added into the model as control. T S denotes the term spread measured by the
difference between the ten-year bond yield and the risk-free rate. DS denotes the default spread measured by
the difference between BAA and AAA corporate bond yield. DP denotes for the dividend-to-price ratio that
is calculated by taking the log difference between dividend and price from the market portfolio. in f l is the
inflation that is the Consumer Price Index. The original sample is from 1998:01 to 2021:12, and q observations
are lost in each of the respective q-horizon regressions. R2 is the adjusted R-squared. For each regression, the
estimated coefficients are reported in line 1, and Newey-West standard t-statistics are reported in parentheses
computed with q−1 lags. The unit of coefficients for the tests of IPG and RMKT is 100 basis points for easy
display. ∗, ∗∗ and ∗∗∗ denote statistical significance at the 10%, 5% and 1% levels, respectively.

Panel A Pearson Correlation between ∆CCB and Future Economic Activity and Investment Opportunity Set
IPG CFNAI rMKT SVAR

q = 1 -0.12 -0.20∗∗∗ 0.01 0.22∗∗∗

q = 3 -0.14 -0.25∗∗∗ -0.07 0.25∗∗∗

q = 12 -0.20∗∗∗ -0.37∗∗∗ -0.24∗∗∗ 0.39∗∗∗

q = 24 -0.23∗∗∗ -0.41∗∗∗ -0.27∗∗∗ 0.51∗∗∗

q = 36 -0.23∗∗∗ -0.49∗∗∗ -0.34∗∗∗ 0.60∗∗∗

q = 48 -0.14∗ -0.49∗∗∗ -0.21∗∗∗ 0.58∗∗∗

Panel B Multiple predictive regressions for validation of ∆CCB as ICAPM State Variable

Forecasting Future Economic Activity
IPG CFNAI

∆CCB T S DS DP in f l R2 ∆CCB T S DS DP in f l R2

q = 1 -0.04 0.11 -0.4 0.17 0.09 0.23 -0.01 -0.09 -0.52 -0.24 0.08 0.57
(-1.26) (1.28 ) (1.23) (1.23) (1.51) (-0.22) (-1.31 ) (-3.91) (-1.73) (1.13)

q = 3 -0.1 0.11 -0.74 0.06 0.22 0.29 -0.0622 -0.1597 -0.3511 -0.30 0.08 0.44
(-0.92) (0.40) (-2.92) (0.15) (1.17) (-0.91) ( -1.2) (-2.09) (-1.38) (0.77)

q = 12 -0.93 0.6 -1.17 0.99 -0.01 0.03 -0.26 -0.07 -0.30 -0.01 -0.04 0.2
(-1.35) (0.58) (-1.28) (0.60) (-0.02) (-1.61) (-0.51) (-1.85) (-0.03) (-0.31)

q = 24 -2.2 1.13 -0.63 3 0.32 0.10 -0.38 -0.06 -0.26 0.27 0.00 0.18
(-1.88) (0.78) (-0.35) (1.15) (0.82) (-1.98) (-0.42) (-1.33) (0.90) (0.04)

q = 36 -2.62 1.08 1.3 2.17 0.62 0.20 -0.46 -0.18 -0.08 0.23 0.06 0.30
(-2.43) (0.68) (0.63) (0.84) (2.30) (-2.57) (-1.15) (-0.37) (0.83) (1.60)

q = 48 -2.13 2.19 -0.68 4.87 0.16 0.25 -0.43 -0.20 -0.32 0.49 0.01 0.38
(-2.22) (1.97 ) (-0.47) (2.36) (0.44) (-2.45) (-2.04 ) (-1.9) (2.19) (0.22)

Forecasting Future Investment Opportunity
rMKT SVAR

∆CCB T S DS DP in f l R2 ∆CCB T S DS DP in f l R2

q = 1 0.13 -0.25 -1.39 1.73 0.3 0.03 -0.01 0.39 0.31 0.37 -0.07 0.43
(0.42) (-0.42) (-2.03) (1.83) (0.91) (-0.11) (3.81 ) (2.79) (2.48) (-1.23)

q = 3 -0.54 -0.29 -2.71 4.48 0.83 0.07 0.02 1.04 1.12 0.60 -0.10 0.44
(-0.92) (-0.19) (-2.10) (1.94) (0.86) (0.09) (2.91) (3.21) (1.17) (-0.55)

q = 12 -4.54 0.16 -2.23 10.15 -1.15 0.26 1.65 3.37 3.21 0.49 0.22 0.35
(-2.06) (0.06) (-0.97) (2.97) ( -0.77) (1.43) (2.16) (2.19) (0.23) (0.29)

q = 24 -7.35 -6.47 6.00 9.3 1.74 0.49 4.66 8.48 1.51 2.30 -0.56 0.42
(-2.59) (-1.79) (1.53) (1.41) ( 1.53) (1.92) (3.44) (0.65) (0.53) (-0.74)

q = 36 -9.92 -7.19 2.19 14.65 2.38 0.49 7.57 11.33 2.62 1.00 -1.00 0.54
(-2.92) (-1.69) (0.45) (2.07) (2.48) (2.64) (3.64) (0.94) (0.20) (-1.72)

q = 48 -7.99 -7.27 -10.79 35.09 0.87 0.56 8.52 11.30 7.60 -7.17 -0.41 0.57
(-3.49) (-1.38) (-2.85) (7.55) (0.78) (3.00) (4.94) (1.89) (-1.60) (-0.54)
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Table 2: AR(p) coefficients of TRMI cyberCrime news measure

This table reports the results from equation (5), an AR(6) model. The left panel presents the autocorrelation
coefficients subject to 6 lags. The right panel presents results by adding ∆V IX and ∆EPU as additional
control variables. Dicker-Fuller test statistics and innovation AR(1) coefficients are reported for the AR(6)
model. The original sample is from 1998:01 to 2021:12, and observations are lost in the right panel subject
to the data availability of V IX and EPU . For each regression, the estimated coefficients are reported in line
1, and Newey-West t-statistics are reported in parentheses and computed with 6 lags. N is the number of
observations in each regression and R̄ is the Adjusted R-squared.

TRMI CCBt CCBt
AR(1) 0.68 0.63

(14.05) (11.69)
AR(2) -0.09 0.06

(-2.52) (1.14)
AR(3) 0.06 0.09

(1.65) (1.78)
AR(4) 0.01 0.07

(0.29) (0.98)
AR(5) -0.03 0.11

(-1.05) (2.61)
AR(6) 0.23 0.11

(6.65) (4.24)
∆V IX 0.93

(0.66)
∆EPU -0.01

(-0.26)
DF -10.35

Innovation AR(1) -0.03
N 8300.00 7206.00
R̄ 0.58 0.67
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Table 3: Univariate Portfolios of Stocks Sorted by βCCA or βTCCA

This table reports univariate portfolio sorting based on the βCCA and βTCCA in the left and right panels, respec-
tively. First, for each month from December 1998, we form quintile portfolios every month by using NYSE
breakpoints, βCCA is estimated from equation (7), and βTCCA is estimated from equation (10), using the last
12 months daily data. Second, we calculate the value-weighted returns for the next month. The first column
in each panel reports individual stocks’ average cybercrime beta and average cybercrime tracking beta in each
relative beta quintile. The remaining columns in each panel present the average excess returns (RET-RF) and
risk-adjusted returns (α3,α5,α6, and α8) for the quintile value-weighted portfolios and the high minus low
portfolio in the last row. α3 is estimated from Fama and French (1993)) three-factor model; α5 is estimated
from Fama and French (2015) five-factor model; α6 is estimated from Fama and French (2015) five-factor
model augmented with the momentum factor; α8 is estimated from Fama and French (2015) five-factor model
augmented with the momentum, short-term and long-term reversal factor. Newey-West adjusted t-statistics
are reported in parentheses. The sample period is from 01/01/1998 to 12/31/2021.

CCA Beta TCCA Beta

βCCA Excess Return α3 α5 α6 α8 β TCCA Excess Return α3 α5 α6 α8

Low -0.23 0.94 0.23 0.29 0.29 0.27 -0.66 1.08 0.41 0.40 0.39 0.39

(3.06) (2.19) (2.50) (2.56) (2.28) (3.70) (2.80) (2.85) (2.85) (2.75)

2 -0.06 0.77 0.19 0.08 0.08 0.07 -0.14 0.83 0.25 0.14 0.14 0.11

(2.90) (2.69) (1.27) (1.23) (1.14) (3.19) (2.64) (1.72) (1.63) (1.38)

3 0.001 0.64 0.04 -0.04 -0.04 -0.04 0.09 0.65 0.06 -0.06 -0.05 -0.07

(2.51) (0.58) (-0.62) (-0.55) (-0.55) (2.35) (0.81) (-0.76) (-0.68) (-0.96)

4 0.06 0.52 -0.09 -0.14 -0.13 -0.14 0.30 0.69 0.04 -0.04 -0.03 -0.03

(1.85) (-1.41) (-1.92) (-1.75) (-1.85) (2.37) (0.42) (-0.46) (-0.30) (-0.27)

High 0.23 0.34 -0.41 -0.36 -0.34 -0.35 0.81 0.14 -0.69 -0.53 -0.50 -0.48

(0.87) (-3.01) (-2.52) (-2.49) (-2.37) (0.32) (-3.49) (-2.92) (-2.94) (-2.64)

High-Low -0.60 -0.64 -0.64 -0.63 -0.62 -0.95 -1.09 -0.92 -0.88 -0.86

(-2.66) (-3.01) (-2.83) (-2.90) (-2.66) (-2.93) (-3.44) (-3.12) (-3.17) (-2.90)
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Table 4: CCA Triggering Trading Demand and βCCA

This table reports the cybercrime news-driven to-buy order test results. First, for each βCCA estimation sam-
ple, we estimate the sensitivity of buy orders to cybercrime news attention (γCCA) from equation (6). Three
measures of investor buy orders. First, the buy fraction (BF) is calculated as the total buy trading volume over
the total volume. Second, the buy and sell spread (BS) is the difference between the buy and sell trading vol-
umes. Lastly, the number of buy orders (BV ) is the logarithm of the total buy trading volume. Panel A reports
the average γCCA in each quintile portfolio sorted by βCCA. Fama-Macbeth cross-sectional regressions results
are presented in Panel B. The control variables include firm size (SIZE) measured by market capitalization
in millions of dollars, book-to-market ratio (BM), operating profitability (OP), investment (I/A), market beta
(βMKT ), momentum (MOM), last month return (LRET), illiquidity (ILLIQ), idiosyncratic volatility (IVOL).
For easy display, the unit in Panel B is percentage points. Newey-West t-statistics (Panel A) and standard
errors (Panel B) are in given parentheses. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and
1% levels, respectively.

Panel A: Average γCCA Respect to Different βCCA Stocks
P1 P2 P3 P4 P5 HL

BF -0.22 -0.01 0.00 0.11 0.27 0.50
(-9.19) (-4.55) (0.15) (6.22) (11.78) (1.47)

BS -6.68 -4.99 0.17 3.35 7.23 13.98
(-8.65) (-3.81) (0.15) (3.86) (6.18) (8.78)

BV 0.90 0.78 0.81 0.88 1.27 0.37
(8.98) (7.81) (7.74) (8.90) (10.52) (6.08)

Panel B: Average Cross-Sectional Relationship between βCCA and γCCA
(1) (2) (3) (4) (5) (6)
BF BF BS BS BV BV

βCCA 0.1∗∗∗ 0.1∗∗∗ 20.06∗∗∗ 22.02∗∗∗ 0.82∗∗∗ 0.95∗∗∗

(0.05) (0.05) (2.39) (2.93) (0.14) (0.13)
Size 0.01 -3.82 0.07∗

(0.01) (3.16) (0.04)
BM -0.01 -1.02 -0.04

(0.01) (0.9) (0.13)
I/A -0.01∗∗ -0.69 -0.02

(0.00) (0.43) (0.02)
OP -0.00 -0.03 0.02

(0.00) (0.15) (0.02)
βMKT 0.01* -1.17 0.16∗

(0.01) (1.56) (0.08)
MOM -0.01 -0.62 0.49∗∗∗

(0.01) (1.20) (0.18)
LRET 0.00 0.28 0.19∗

(0.02) (2.74) (0.01)
IVOL 0.00 -0.05 0.00

(0.00) (0.04) (0.00)
ILLIQ 0.01 -1.79 -0.1∗∗∗

(0.01) (1.38) (0.03)
Intercept 0.02 0.05 -0.09 12.35 0.96 -0.8

(0.02) (0.05) (0.93) (9.97) (0.1) (0.1)
R-Squared 3 4 4 3 1 13

Obs 276 276 276 276 276 276
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Table 5: βTCAA Portfolio Returns Controlled by Industries Divided by Demand for
Cybersecurity

Stocks are divided into 12 industries based on the four-digit SIC code. We group industries into those that
demand less cybersecurity and those with high cybersecurity demand based on the World Economic Forum
(2016) report and Cybersecurity.org that, analyze the importance of each industry’s demand for cybersecu-
rity. The group of firms with lower demand for cybersecurity includes industries from consumer durables,
manufacturing, shops, utilities, and others. The group of cybersecurity demanding firms includes industries
from consumer nondurables, energy, high-tech, telecommunication, healthcare, and finance. For each month,
stocks are sorted into each cybersecurity dependence group. Then, within each group, we sort stocks into
quintile portfolios based on βTCCA, where quintile 1 (5) contains stocks with the lowest (highest) βTCCA from
the previous month. The results for the high minus low portfolio are reported in the last row. α5 is estimated
from Fama and French (2015) five-factor model; α6 is estimated from Fama and French (2015) five-factor
model augmented with the momentum factor; α8 is estimated from Fama and French (2015) five-factor model
augmented with the momentum, short-term and long-term reversal factor. Newey-West adjusted t-statistics
are reported in parentheses. The sample period is from 01/01/1998 to 12/31/2021.

Portfolio Low Cybersecurity Demand High Cybersecurity Demand

α5 α6 α8 α5 α6 α8

Low 0.43 0.42 0.42 0.50 0.49 0.48

(2.58) (2.55) (2.53) (3.28) (3.27) (3.02)

2 -0.02 0.00 -0.01 0.24 0.24 0.21

(-0.19) (0.004) (-0.12) (2.23) (2.10) (1.83)

3 -0.03 -0.01 -0.03 -0.04 -0.04 -0.07

(-0.29) (-0.12) (-0.33) (-0.32) (-0.36) (-0.55)

4 -0.27 -0.25 -0.27 -0.03 -0.02 -0.01

(-2.13) (-1.98) (-2.09) (-0.25) (-0.13) (-0.09)

High -0.56 -0.53 -0.52 -0.44 -0.41 -0.40

(-2.75) (-2.73) (-2.64) (-1.91) (-1.87) (-1.73)

High-Low -0.97 -0.95 -0.94 -0.64 -0.89 -0.88

(-3.20) (-3.20) (-3.16) (-2.71) (-2.75) (-2.50)
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Table 6: βTCCA and Average Stock Characteristics

This table reports the time-series average of slop coefficients from Fama-Macbeth cross-sectional regressions
of βTCCA on stock-level characteristics. The slope coefficients for each monthly cross-sectional regression
are estimated from equation (11). The stock-level characteristic variables include the market beta (βMKT ),
the market volatility beta (βV IX ), the economic policy uncertainty beta (βEPU ), the firm size measured by
the logarithm of market capitalization, book-to-market ratio (BM), operating profitability (OP), investment
(I/A), last month return (LRET), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), momentum (MOM) and
analyst forecast dispersion (DISP). The cross-sectional regressions are conducted monthly from January 1999
to December 2021. Newey-West standard errors are reported in parentheses. ∗,∗∗, and ∗∗∗ denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
βMKT 0.18∗∗ 0.22∗∗

(0.08) (0.09)
βV IX 0.01 -0.002

(0.01) (0.009)
βEPU 0.003 -0.002

(0.09) (0.08)
Size −0.012∗∗ 0.006

(0.006) (0.01)
BM 0.07∗∗ 0.03∗

(0.03) (0.02)
OP 0.004 0.006

(0.003) (0.004)
I/A 0.01 0.003

(0.01) (0.008)
LRET -0.03 -0.01

(0.05) (0.04)
ILLIQ 0.005∗∗ 0.02∗∗

(0.003) (0.008)
IVOL 0.001 -0.001

(0.001) (0.001)
MOM −0.11∗∗∗ −0.07∗∗∗

(0.04) (0.02)
DISP 0.31 0.02

(0.23) (0.04)
Intercept−0.10∗0.09∗∗0.09∗∗ 0.19∗∗ 0.06 0.10∗∗ 0.10∗ 0.09∗∗ 0.15∗∗ 0.06 0.10∗ 0.10∗∗ -0.004

(0.05) (0.05) (0.04) (0.09) (0.04) (0.05) (0.05) (0.05) (0.07) (0.05) (0.05) (0.05) (0.08)
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Table 7: α8 in Bivariate Portfolio Sorts

This table presents bivariate portfolio sorting results. First, we sort stocks based on each control variable into
quintiles. Second, stocks within each control variable are sorted into quintiles based on βTCCA. This table
reports the next month’s value-weighted portfolio return alphas (α8) estimated by the Fama and French (2015)
five-factor model augmented with momentum and short and long-term reversal factors for each βTCCA quintile,
averaged across the five control groups. The control variables include firm size (SIZE) measured by market
capitalization in millions of dollars, book-to-market ratio (BM), operating profitability (OP), investment (I/A),
market beta (βMKT ), market volatility beta (βV IX ), economic policy uncertainty beta (βEPU ), momentum
(MOM), last month return (LRET), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), and analyst forecast
dispersion (DISP). The differences in α8between quintile 5 (High) and quintile 1 (Low) are presented in the
last row. Newey-West adjusted t-statistics are given in parentheses.

β TCCA SIZE BM OP I/A βMKT βV IX βEPU MOM LRET ILLIQ IVOL DISP

Low 0.31 0.36 0.49 0.43 0.31 0.44 0.34 0.37 0.38 0.33 0.36 0.42

(1.90) (2.25) (2.53) (2.45) (2.09) (2.75) (2.05) (2.75) (2.38) (2.03) (2.11) (2.63)

P2 0.05 0.12 0.05 0.10 0.10 0.05 0.08 0.16 0.04 0.03 0.04 0.07

(0.68) (1.51) (0.51) (1.22) (0.98) (0.58) (1.04) (1.85) (0.54) (0.43) (0.45) (0.88)

P3 -0.04 0.05 -0.04 -0.04 0.06 -0.06 -0.05 -0.08 -0.02 -0.02 -0.03 -0.15

(-0.51) (0.57) (-0.52)(-0.46) (0.71) (-0.84)(-0.65)(-0.98)(-0.19)(-0.26)(-0.29)(-1.83)

P4 -0.12 -0.10 -0.11 -0.11 -0.22 -0.15 -0.10 -0.14 -0.15 -0.14 -0.17 -0.17

(-1.66)(-1.15)(-1.16)(-1.20)(-2.59)(-1.67)(-1.03)(-1.43)(-1.68)(-1.82)(-1.70)(-1.65)

High -0.36 -0.45 -0.45 -0.37 -0.44 -0.44 -0.44 -0.34 -0.41 -0.40 -0.37 -0.40

(-2.39)(-2.62)(-2.74)(-2.20)(-2.68)(-2.60)(-2.74)(-2.22)(-2.52)(-2.49)(-2.07)(-2.39)

High-Low -0.67 -0.81 -0.93 -0.80 -0.75 -0.87 -0.78 -0.70 -0.79 -0.72 -0.73 -0.82

(-2.33)(-2.65)(-2.84)(-2.51)(-2.89)(-2.93)(-2.60)(-2.77)(-2.70)(-2.42)(-2.35)(-2.70)
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Table 8: Stock-Level Fama-MacBeth Cross-Sectional Regressions on βTCCA

This table reports the time-series averages of the slope coefficients from regressing stock one month ahead
of excess returns (in percentage) on the cybercrime tracking beta (βTCCA) and a set of control variables with
return predictability using Fama-Macbeth cross-sectional regressions. The left panel shows results without
industry control, and the right panel reports results with further industry control. The control variables in-
clude firm size (SIZE) measured by market capitalization in millions of dollars, book-to-market ratio (BM),
operating profitability (OP), investment (I/A), market beta (βMKT ), market volatility beta (βV IX ), economic
policy uncertainty beta (βEPU ), momentum (MOM), last month return (LRET), illiquidity (ILLIQ), idiosyn-
cratic volatility (IVOL), and analyst forecast dispersion (DISP). Since illiquidity and size may be strongly
correlated, the second-column and third-column report results for controlling these two variables separately.
Newey-West adjusted standard errors are given in parentheses. ∗∗∗: p < 0.01, ∗∗: p < 0.05, ∗: p < 0.1

Without Inudustry Control With Industry Control

Rei,t+1 Rei,t+1 Rei,t+1 Rei,t+1 Rei,t+1 Rei,t+1
βTCCA −0.46∗∗ −0.29∗∗ −0.30∗∗ −0.44∗∗ −0.27∗∗ −0.28∗∗

(-0.18) (-0.13) (-0.13) (-0.17) (-0.13) (-0.13)
βMKT 0.18 0.15 0.17 0.15

(-0.23) (-0.23) (-0.23) (-0.23)
βV IX −0.13∗∗ −0.13∗∗ −0.13∗∗ −0.13∗∗

(-0.06) (-0.06) (-0.06) -0.06
βEPU -0.13 -0.13 -0.12 -0.12

(-0.20) (-0.20) (-0.20) (-0.19)
Size −0.09∗ −0.09∗

(-0.05) (-0.05)
BM -0.04 -0.04 -0.04 -0.03

(-0.14) (-0.14) (-0.14) (-0.14)
OP 0.14∗∗ 0.14∗∗ 0.14∗∗ 0.14∗∗

(-0.07) (-0.07) (-0.07) (-0.07)
I/A −0.17∗∗∗ −0.17∗∗∗ −0.17∗∗∗ −0.16∗∗

(-0.06) (-0.06) (-0.06) (-0.06)
LRET −1.27∗∗∗ −1.33∗∗∗ −1.28∗∗∗ −1.35∗∗∗

(-0.45) (-0.45) (-0.44) (-0.44)
IVOL -0.01 -0.01 -0.01 -0.01

(-0.01) (-0.01) (-0.01) (-0.01)
MOM 0.01 -0.01 0.01 -0.01

(-0.23) (-0.22) (-0.22) (-0.22)
DISP −1.33∗∗ −1.36∗∗ −1.31∗∗ −1.33∗∗

(-0.65) (-0.65) (-0.65) (-0.65)
ILLIQ 0.04 0.05

(-0.03) (-0.03)
Intercept 0.76∗∗ 1.36∗∗∗ 1.12∗∗ 0.92∗∗ 1.48∗∗∗ 1.25∗∗

(-0.34) (-0.47) (-0.50) (-0.40) (-0.46) (-0.49)
R-squared 0.02 0.09 0.09 0.02 0.10 0.10

Obs 276 276 276 276 276 276
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Table 9: βTCCA Estimated by 349 Portfolios with FF5 model

Thie table reports univariate portfolio sorting based on the βTCCA that is estimated with 349 equity portfolios.
First, for each of the 49 industry portfolios and 100 portfolios (10× 10 bivariate) formed on size and book-
to-market, size and investment, and size and profitability, we estimate the cybercrime tracking beta by using
the ex-ante tracking factor (TCCA) with daily data using equation (11). Second, we form quintile portfolios
from January 1999 to December 2021. The first column reports the equity portfolio’s average cybercrime new
tracking beta in each relative beta quintile. The remaining columns in each panel present the average portfolio
excess returns (RET-RF) and risk-adjusted returns (α5,α6, and α8) for the quintile value-weighted portfolios
and the high minus low portfolio in the last row. α5 is estimated from Fama and French (2015) five-factor
model; α6 is estimated from Fama and French (2015) five-factor model augmented with the momentum factor;
α8 is estimated from Fama and French (2015) five-factor model augmented with the momentum, short-term
and long-term reversal factor. αq is estimated from Hou et al. (2015) q-factor model. Newey-West adjusted
t-statistics are reported in parentheses.

Beta TCAA Excess Return α5 α6 α8 αq

Low -0.24 0.73 0.09 0.08 0.07 0.03

(2.34) (0.97) (0.88) (0.74) (0.35)

P2 -0.07 0.65 -0.03 -0.02 -0.03 -0.05

(2.32) (-0.51) (-0.38) (-0.55) (-0.83)

P3 0.008 0.67 -0.04 -0.02 -0.03 -0.02

(2.38) (-0.62) (-0.41) (-0.49) (-0.24)

P4 0.09 0.70 -0.02 -0.01 -0.02 0.002

(2.46) (-0.28) (-0.19) (-0.30) (0.03)

High 0.27 0.43 -0.17 -0.17 -0.16 -0.23

(1.41) (-2.22) (-2.21) (-2.16) (-2.65)

High-Low -0.30 -0.26 -0.25 -0.23 -0.26

(-2.68) (-2.30) (-2.22) (-2.05) (-2.23)

47



Table 10: Ex-post Cybercrime Mimicking Value-Weighted Pricing Factor

This table reports the results of the ex-post cybercrime mimicking factor pricing test. First, we estimate the
weights b′ by using equation (7) on a monthly rolling basis. Second, we multiply b′ by the vector of one-month
ahead base asset returns that are the five value-weighted portfolio returns sorted by βCCA from equation (5) to
obtain the cybercrime ex-post pricing factor return from January 1999 to December 2021. The first column is
the average return of the ex-post cybercrime tracking factor. The remaining columns present results based on
different pricing models. αCAPM is eatimated from the CAPM model. α3 is estimated from Fama and French
(1993)) three-factor model; α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated
from Fama and French (2015) five-factor model augmented with the momentum factor; α8 is estimated from
Fama and French (2015) five-factor model augmented with the momentum, short-term and long-term reversal
factor. Newey-West adjusted t-statistics are reported in parentheses.

FCCA Monthly Pricing Factor Test
Factor αCAPM α3 α5 α6 α8 αq

Models -0.44 -0.44 -0.46 -0.47 -0.46 -0.45 -0.42
(-3.51) (-3.47) (-3.60) (-3.47) (-3.48) (-3.30) (-3.16)

MKT 0.01 -0.005 -0.005 -0.01 -0.03 RMKT -0.03
(0.23) (-0.12) (-0.12) (-0.23) (-0.60) (-0.54)

SMB 0.09 0.10 0.10 0.06 RME 0.04
(1.81) (1.61) (1.64) (0.99) (0.72)

HML 0.09 0.07 0.07 0.02 RIA 0.07
(1.85) (1.25) (1.06) (0.26) (1.12)

RMW 0.02 0.03 0.06 RROE -0.10
(0.35) (0.41) (1.01) (-1.80)

CMA -0.03 -0.03 -0.09
(-0.34) (-0.30) (-0.92)

UMD -0.014 -0.021
(-0.51) (-0.87)

ST 0.02
(0.50)

LT 0.15
(2.49)

R̄2 -0.003 0.02 0.02 0.01 0.03 0.02
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Table 11: Fama-Macbeth Risk Premium Tests on 349 Portfolios

This reports the Fama–Macbeth (1973) factor premiums on 349 portfolios, including 49 industry portfolios
and 100 portfolios (10×10 bivariate) formed on size and book-to-market, size and investment, and size and
profitability. We augment the baseline models that are Fama and French (2015) five-factor model and Hou
et al. (2015) q-factor model with the ex-post cybercrime pricing factor (FCCA). We report ex-post factor
loadings for FCCA and other factors with perchance units. Newey-West t-statistics are given in parentheses.
The sample period is from January 1999 to December 2021.

FCCA Risk Premimum
rp FF5 q-Factor

FCCA -2.82 FCCA -3.95
(-4.20) (-4.38)

MKT -0.99 -0.85 RMKT -4.06 -3.08
(-2.12) (-1.89) (-3.99) (-3.69)

SMB 1.00 1.00 RME 0.45 0.66
(3.52) (3.52) (1.62) (2.26)

HML -1.24 -1.00 RIA 1.31 1.54
(-2.99) (-2.66) (3.49) (3.81)

RMW 0.67 0.54 RROE -1.36 -0.70
(2.25) (1.81) (-2.26) (-1.35)

CMA 2.01 1.82
4.2 4.08

Intercept 1.44 1.25 4.29 3.37
(6.04) (5.80) (5.32) (5.40)

R̄ 0.27 0.28 0.26 0.28
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Table 12: Univariate Portfolios of Stocks Sorted by Google-Search Trend Based
Cybercrime Beta

This table reports univariate portfolio sorting based on the βSV I and βT SV I in the left and right panels, respec-
tively. First, for each month from December 1998, we form quintile portfolios every month by using NYSE
breakpoints, βSV I is estimated from equation (14), and βT SV I is estimated from equation (10) by replacing
TCCA with T SV I, using the last 12 months daily data. Noted that the T SV I is constructed as the same proce-
dure with TCCA by using Google Search Trend data. Second, we calculate the value-weighted returns for the
next month. The first column in each panel reports individual stocks’ average cybercrime beta and average
cybercrime tracking beta in each relative beta quintile. The remaining columns in each panel present the
average excess returns (RET-RF) and risk-adjusted returns (α3,α5,α6, and α8) for the quintile value-weighted
portfolios and the high minus low portfolio in the last row. α3 is estimated from Fama and French (1993))
three-factor model; α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated from
Fama and French (2015) five-factor model augmented with the momentum factor; α8 is estimated from Fama
and French (2015) five-factor model augmented with the momentum, short-term and long-term reversal fac-
tor. Newey-West adjusted t-statistics are reported in parentheses. The sample period is from 01/01/2007 to
12/31/2021.

SVI Beta TSVI Beta

βCCA Excess Return α3 α5 α6 α8 β TCCA Excess Return α3 α5 α6 α8

Low -0.58 1.14 0.10 0.15 0.15 0.15 -2.55 1.34 0.29 0.37 0.38 0.36

(2.43) (0.92) (1.40) (1.46) (1.40) (2.33) (1.41) (1.99) (2.09) (2.11)

2 -0.16 1.06 0.17 0.11 0.11 0.11 -0.93 1.18 0.26 0.23 0.23 0.23

(2.80) (2.38) (1.55) (1.59) (1.52) (2.92) (2.56) (2.34) (2.50) (2.49)

3 -0.01 0.97 0.10 0.05 0.05 0.04 -0.17 0.92 0.02 -0.00 -0.01 -0.00

(2.79) (1.68) (0.89) (0.87) (0.90) (2.60) (0.19) (-0.02) (-0.01) (-0.02)

4 0.15 0.83 -0.10 -0.10 -0.10 -0.11 0.55 0.89 -0.06 -0.42 -0.03 -0.03

(2.35) (-1.26) (-1.31) (-1.33) (-1.37) (2.51) (-0.51) (-0.26) (-0.27) (-0.24)

High 0.59 0.69 -0.49 -0.37 -0.38 -0.38 1.97 0.57 -0.5 -0.42 -0.42 -0.41

(1.42) (-2.88) (-2.25) (-2.33) (-2.20) (1.38) (-3.01) (-2.39) (-2.55) (-2.38)

High-Low -0.45 -0.59 -0.53 -0.53 -0.52 -0.76 -0.79 -0.79 -0.78 -0.77

(-2.04) (-2.77) (-2.41) (-2.55) (-2.31) (-2.12) (-2.45) (-2.51) (-2.73) (-2.63)
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